Problem §3.2: 2(a,b,e,f): Determine whether each of these functions is $O(x^2)$:

- (a) f(x) = 17x + 11.
- (b) $f(x) = x^2 + 1000.$
- (e) $f(x) = 2^x$.
- (f) $f(x) = \lfloor x \rfloor \cdot \lceil x \rceil$.

Problem §3.2: 8: Find the least integer n such that f(x) is $O(x^n)$ for each of these functions.

- (a) f(x) = 2x² + x³ log x.
 (b) f(x) = 3x⁵ + (log x)⁴.
 (c) f(x) = (x⁴ + x² + 1)/(x⁴ + 1).
- (d) $f(x) = (x^3 + 5\log x)/(x^4 + 1).$

Problem §3.2: 17: Suppose that f(x), g(x), and h(x) are functions such that f(x) is O(g(x)) and g(x) is O(h(x)). Show that f(x) is O(h(x)).

Problem §3.2: 26: Give a big-O estimate for each of these functions. For the function g in your estimate f(x) is O(g(x)), use a simple function g of the smallest order.

(a) $f(x) = (n^3 + n^2 \log n)(\log n + 1) + (17 \log n + 19)(n^3 + 2).$

(b)
$$f(x) = (2^n + n^2)(n^3 + 3^n).$$

(c) $f(x) = (n^n + n2^n + 5^n)(n! + 5^n).$

Problem §3.2: 28(a,b,c,d): Determine whether each of the following functions is $\Omega(x)$ and whether it is $\Theta(x)$.

- (a) f(x) = 10.
- (b) f(x) = 3x + 7.
- (c) $f(x) = x^2 + x + 1$.
- (d) $f(x) = 5 \log x$.

Problem Extra: Explain what it means for a function to be

- (a) O(1).
- (b) $\Omega(1)$.
- (c) $\Theta(1)$.

Problem §5.1: 4: Let P(n) be the statement that $1^3 + 2^3 + \cdots + n^3 = (n(n+1)/2)^2$ for the positive integer n.

(a) What is the statement P(1)?

- (b) Show that P(1) is true, completing the basis step of the proof.
- (c) What is the inductive hypothesis?
- (d) What do you need to prove in the inductive step?
- (e) Complete the inductive step, identifying where you use the inductive hypothesis.
- (f) Explain why these steps show that this formula is true whenever n is a positive integer.

Problem §5.1: 6: Prove that $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! - 1$ whenever n is a positive integer.

Problem §5.1: 8: Prove that $2 - 2 \cdot 7 + 2 \cdot 7^2 - \dots + 2(-7)^n = (1 - (-7)^{n+1})/4$ whenever *n* is a nonnegative integer.

Problem §5.1: 20: Prove that $3^n < n!$ if n is an integer greater than 6.

Problem §5.1: 34: Prove that 6 divides $n^3 - n$ whenever n is a nonnegative integer.

Problem §5.1: 49: What is wrong with this "proof" that all horses are the same color?

Let P(n) be the proposition that all the horses in a set of n horses are the same color.

Basis Step: Clearly, P(1) is true.

Inductive Step: Assume that P(k) is true, so that all the horses in any set of k horses are the same color. Consider any k + 1 horses: number these horses as $1, 2, 3, \ldots, k, k + 1$. Now the first k of these horses all must have the same color. Because the set of the first k horses and the set of the last k horses overlap, all k + 1 must be the same color. This shows that P(k + 1) is true and finishes the proof by induction.

Problem §5.1: 51: What is wrong with this "proof"?

"Theorem": For every positive integer n, if x and y are positive integers with $\max(x, y) = n$, then x = y.

Basis Step: Suppose that n = 1. If max(x, y) = 1 and x and y are positive integers, we have x = 1 and y = 1.

Inductive Step: Let k be a positive integer. Assume that whenever $\max(x, y) = k$ and x and y are positive integers, then x = y. Now let $\max(x, y) = k + 1$, where x and y are positive integers. Then $\max(x - 1, y - 1) = k$, so by the inductive hypothesis x - 1 = y - 1. It follows that x = y, completing the inductive step.