Math 213, Fall 2024 Homework 3 Due Sunday, 9/15 at 11:59pm

Problem §3.2: 2(a,b,e,f): Determine whether each of these functions is O(x?):
(a) f(z) =17z + 11
(b) f(x) = 2%+ 1000
(e) flz)=2"
() fz) = [z] - [=].

Solution. (a) Yes, f(z) is O(z?) because
|17z 4+ 11| < [172 + x| = [18z| < [182?|
for all x > 11. The witnesses are C' = 18 and k = 11.

(b) Yes, f(x) is O(2?) because
|2? +1000] < |22 + 27| = 222

for all z > 1/1000. The witnesses are C = 2 and k = +/1000.

(c) No, f(z) is not O(2?). If it were, then we would have |2%| < C|z?| for some constant C, but
2% > 3 for all > 10. So for large z, |2%/2%| > |#3/2?| = |x| which is certainly not bounded
by a constant.

(f) Yes, f(z) is O(2?) because
|[z][2]| < |z(z +1)| < 2(22) = 22

for all z > 1. The witnesses are C' =2 and k = 1.

O
Problem §3.2: 8: Find the least integer n such that f(x) is O(z™) for each of these functions.
(a) f(z) =222+ 2%logz.
(b) f(x) = 325 + (logz)*.
(¢) f(z)=(z*+224+1)/(z* +1).
(d) f(z) = (2® +5logx)/(z* + 1).

Solution. For each function, we essentially want to identify its fastest growing term and find an
O(z™) bound for that term.

(a) The fastest growing term is 2®logx. This term is not O(2?) because the logx factor grows
without bound as x grows. Because logx grows more slowly than x, this suggests that it may
be O(x*). To verify this, we observe that

1222 + 23 log x| < |22 + 2% = 3|2?|
for all 2 > 1. As such, f(z) is O(z*) with witnesses C = 3 and k = 1.
(b) The fastest growing term is 3x°. To see that f(z) is O(x®), observe that
1325 + (log x)*| < |32° + 2°| = 4|2°|

for all z > 1. As such, f(z) is O(2%) with witnesses C' =4 and k = 1.
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(¢) Informally, we can observe that if we took the limit of f(z) as  — oo, this function would
approach 1. This suggests that the function is O(1). To verify this, observe that

x4+m4+x4
4

x4+$4+x4
x4 4+1

2?41
x4 +1

<

<

x
so f(x) is O(1) with witnesses C' = 3 and k = 1.
(d) Again, we can informally observe when z is very large, f(x) &~ 1/x. This suggests that the
function is O(1/x). To verify this, observe that
o3 + bad
xt+1
623

x4

2% +5logx
i+ 1

for x >0

<

so f(x) is O(1/x) with witnesses C' = 6 and k = 0.

Problem §3.2: 17: Suppose that f(x), g

(2), and h(z) are functions such that f(z) is O(g(x))
and g(x) is O(h(z)). Show that f(z) is O(h(x

))-

Solution. Assume that f(x) is O(g(z)), so by definition there exist constants C; and k; such that
|f(z)] < Cilg(z)| for & > k1. Assume also that g(z) is O(h(z)), so by definition there exist constants
C5 and ko such that |g(x)| < Ca|h(z)| for > ko. Then observe that

|f(@)] < Cilg(x)] < C1C2|h(z)]|

when & > max(ky,k2). Hence, f(x) is by definition O(h(x)) with witnesses C' = C;Cy and
k= max(kl, kQ) O

Problem §3.2: 26: Give a big-O estimate for each of these functions. For the function g in
your estimate f(z) is O(g(x)), use a simple function g of the smallest order.

(a) f(z) = (n®+n%logn)(logn+ 1) + (17logn + 19)(n3 + 2).
() f(x) = (2" + n?)(n? + 3").
(¢) f(x) = (n™+n2™ 4+ 5™)(n! 4 5™).

Solution. As in Problem 8 from §3.2, we want to identify the fastest growing term. Discarding any
constant multiple, this term gives a smallest order big-O estimate for the function.

(a) We look at each term independently. The first term is the product (n® + n?logn)(logn + 1).
The fastest growing term of the n® 4+ n?logn factor is n3 and the fastest growing term of the
logn + 1 factor is logn. So this term “grows like” n?logn. The second term is the product
(171logn + 19)(n3 + 2). By similar reasoning, this term “grows like” n3logn. This means the
overall funtion is O(n3logn + n®logn) = O(2n3logn). Because constant coefficients aren’t
important when thinking about big-O estimates, this is equivalent to being O(n?logn).

(b) Again, we want to identify the fastest growing term in each factor. The first factor 2" + n?
has fastest growing term 2". The second factor n® + 3" has fastest growing term 3". As such,

f(z)is O(2™ - 3™) = O(6™).
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(c) The fastest growing term in the first factor, n™ + n2™ + 5™, is n™. The fastest growing factor
in the second term, n! 4+ 57, is nl. As such, f(z) is O(n™n!).

O
Problem §3.2: 28(a,b,c,d): Determine whether each of the following functions is Q(x) and
whether it is O(x).
(a) f(z) = 10.
(b) f(z)=3x+7
(©) f@)=a®+a+1
(d) f(z)=5logx

Solution. One strategy for finding a big-Theta estimate for for f(x) is, as in previous problems, to
look at the fastest growing term.

(a) No, this function is not ©(z). We know that a function f(x) is O(z) if and only if f(x) is O(z)
and z is O(f(z)). Clearly f(z) =10 is O(x) because 10 < |z| for all > 10. Observe however
that 2 is not O(10) because there are no constants C, k for which |z| < 10 for all x > k. As
such, f(z) =10 is not O(x).

(b) Yes, this function is ©(z). Observe that |3z + 7| < 4|z| for > 7 and that |3z + 7| > 3|z|
for x > 0 (in fact, this is true for all £ so we could have said x > k for any choice of k). By
definition, this means f(z) = 3z + 7 is O(z) and Q(z) and is therefore O(z).

(c) No, this function is not ©(x). The leading term, z2, grows more quickly than = and therefore
f(z) is not O(x) or O(z). (It is, however, Q(x)!)

(d) No, this function is not ©(x). The function logz grows more slowly than x, so f(x) is not
Q(z) or O(z). (It is, however, O(z)!)

O

Problem Extra: Explain what it means for a function to be

Solution. (a) By definition, a function f(z) is O(1) if there exist constants C, k such that |f(z)| <
C for all > k. In other (more intuitive) words, a function f(x) is O(1) if its absolute value
is bounded above for all > k.

(b) By definition, a function f(z) is (1) if there exist constants C,k such that |f(x)| > C for
all x > k. In other (more intuitive) words, a function f(z) is (1) if its absolute value is
bounded below for all z > k so f(x) “stays away” from zero for large enough x. For example,
the function 1/x is not Q(1) because lim,_,o, 1/ = 0 but the function x — 5 is because, for
example, |z — 5| > 3 for z > 7.

(¢) By definition, a function f(x) is Theta(1) if there exist positive constants C7,Cs, and k such
that
C1<|[f(2)] < Ca

for all & > k. This means that |f(z)| is bounded between two positive constants. So for large
x, | f(z)| can’t get “too large” or too close to zero.
O
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Problem §5.1: 4: Let P(n) be the statement that 13 +23 + -+ +n3 = (n(n +1)/2)? for the
positive integer n.

(a) What is the statement P(1)?
(b) Show that P(1) is true, completing the basis step of the proof.

¢) What is the inductive hypothesis?

(
(d) What do you need to prove in the inductive step?

e) Complete the inductive step, identifying where you use the inductive hypothesis.

f

)
)
)
)
)
)

(
(

Solution. (a) P(1) is the statement

Explain why these steps show that this formula is true whenever n is a positive integer.

- ()

(b) We can easily verify that both sides of P(1) are equal to 1:

() - )

13 =1.

(¢) The inductive hypothesis is the statement that

13+23+-~~+k3<

We denote this statement as P(k).

(d) In the inductive step, we want to show that P(k) implies P(k + 1) for each k£ > 1. That is, we
want to show that by assuming the inductive hypothesis from part (¢) we can prove that

(k+1)(k+2)\>
)

13+23+-~~+k3+(k+1)3:<

(e) Beginning with the left hand side of P(k + 1), we can observe that

k(k + 1

(02 1) = )>2+<k+1)3 (by the THOP)

as desired.

(f) Because we’ve shown that the statement holds for the base case, n = 1, and that P(k) implies
P(k + 1), we know by the principle of mathematical induction that the statement P(n) holds

for all positive integers n.
O



Math 213, Fall 2024 Homework 3 Due Sunday, 9/15 at 11:59pm

Problem §5.1: 6: Prove that 1-114+2-2!4+---+n-nl = (n+1)! — 1 whenever n is a positive
integer.

Solution. We will use mathematical induction to show that
1-1+2-21+--+n-nl=mn+1! -1

for all positive integers n.

Base Case: When n = 1, we can verify that 1-11 =1=2!—1.

Inductive Step: Assume that 1-11+2-21+ ...+ k- -kl = (k+ 1)! =1 for k € Zs(. Observe that

11422044k bl (k1) - (k+ 1) =(k+1)! =14 (k+1)-(k+1)!  (by the IHOP)
=(k+2)-(k+1)!—1.

Conclusion: Because we’ve shown that the identity holds for n = 1 and that 1-1!4+2-2!+-- -+ k-k! =
(k+1)!—11implies 1- 11+2- 21+ -+ k- Kl +(k+1)- (k+1)! = (k+2)! -1 for all k € Z~, we conclude
by the principle of mathematical induction that the claim holds for all n € Z~(, as desired. O

Problem §5.1: 8: Prove that 2—2-7+2-7% — ... +2(=7)" = (1 — (=7)""!) /4 whenever n
is a nonnegative integer.

Solution. We wish to show that for all n € N|

1— (_7)n+1

2-2-7T4+2-7—.. . 42(-7)" = I

Base Case: When n = 0, the left-hand side has only the single term 2 and the right-hand side
simplifies to

LT 1-(-T) 8,
4 N 4 4

Because both sides of the identity are equal to 2, P(0) is true.

Inductive Step: Assume P(k) is true, i.e. that 2 —2-7+2-72 — ... 4 2(=7)F = (1 — (=7)**1)/4.

We can then observe that

2-2.7T+2-7— . 4 2(=T)F 4 2(-7)F" = %ﬂk“ +2(=7)k1  (by the THOP)
7 1— (_7)k+1 4 8(_7)k+1
B 4
B 1+ 7(_7)k+1
N 4
_ 1= (=D)(=7)
N 4
1= (=7)F*2
=0

Conclusion: Because we’ve shown that the identity holds for n = 0 and that P(k) implies P(k+1)
for all k£ € N, we have therefore shown by mathematical induction that

1—(=7)"*!
4
for all n € N, as desired. O

2-2-T+2- 7% — .. 42(-7)" =
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Problem §5.1: 20: Prove that 3" < n! if n is an integer greater than 6.

Solution. We wish to show that 3™ < n! for all integers n > 6.

Base Case: The smallest integer greater than 6 is n = 7, so that’s the appropriate base case. To
verify that the statement holds for n = 7, observe that 37 = 2187, 7! = 5040, and so 37 < 7!.

Inductive Step: Assume that 3¥ < k! for some integer k > 6. Then observe that

gk+l _ 3. gk
<(k+1)-3 (because k > 6,s0 k+1>7>3)
<(k+1)-k (by the THOP)
= (k+1)!

Conclusion: Because we verified the base case 37 < 7! and showed that 3% < k! implies 3**! <
(k+ 1)! for all k > 6, we have shown by the principle of mathematical induction that 3™ < n! for all
integers n > 6, as desired. O

Problem §5.1: 34: Prove that 6 divides n® — n whenever n is a nonnegative integer.

Solution. We wish to show that 6 divides n® — n for all nonnegative integers n.

Base Case: The smallest nonnegative integer is n = 0. When n = 0, the statement trivially holds
because 6 | 0 (This is standard notation that means “6 divides 07).

Inductive Step: Suppose that 6 | (k* — k) for some nonnegative integer k. We wish to show that
6 also divides (k + 1)3 — (k + 1). To see this, observe that

(k+13—(k+1) =k +3k>+3k+1—k—1
= (k* — k) + 3(k* + k)
= (k* — k) + 3k(k + 1)

We know that 6 | (k® — k) by the inductive hypothesis. Observe that the second term, 3k(k + 1),
is clearly divisible by 3. It must also be divisible by 2, because either k or k 4+ 1 must be even. As
such, the second term must also be divisible by 6 and therefore 6 must divide the entire expression,
ie. 6] ((k+1)2—(k+1)).

Conclusion: Because we showed that 6 | (0> —0) and that having 6 | (k* — k) implies 6 | ((k+1)3 —
(k+ 1)) for all integers k > 0, we have therefore shown by the principle of mathematical induction
that 6 | (n® —n) for all nonnegative integers n, as desired. O

Problem §5.1: 49: What is wrong with this “proof” that all horses are the same color?

Let P(n) be the proposition that all the horses in a set of n horses are the same color.
Basis Step: Clearly, P(1) is true.

Inductive Step: Assume that P(k) is true, so that all the horses in any set of k& horses are the
same color. Consider any k + 1 horses: number these horses as 1,2,3,...,k,k+ 1. Now the
first k of these horses all must have the same color. Because the set of the first k& horses and
the set of the last k horses overlap, all k + 1 must be the same color. This shows that P(k+ 1)
is true and finishes the proof by induction.

Solution. This “proof” has the same flaw as Example 3 on the “Errors in Inductive Proofs” work-
sheet. The problem is that the argument in the inductive step is not valid when &k = 1. When k =1,
the inductive step tells us to divide a set of two horses into a set containing just the first horse and
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a set containing just the last horse. In this case, the statement “Because the set of the first k£ horses
and the set of the last k£ horses overlap...” is nonsense - the set containing just the first horse and
the set containing just the second horse are disjoint. O

Problem §5.1: 51: What is wrong with this “proof”?

“Theorem”: For every positive integer n, if x and y are positive integers with max(z,y) = n,
then z = y.

Basis Step: Suppose that n = 1. If max(x,y) = 1 and « and y are positive integers, we have
r=1and y=1.

Inductive Step: Let k be a positive integer. Assume that whenever max(z,y) = k and z and
y are positive integers, then z = y. Now let max(z,y) = k + 1, where 2 and y are positive
integers. Then max(z — 1,y — 1) = k, so by the inductive hypothesis x — 1 = y — 1. It follows
that z = y, completing the inductive step.

Solution. Again, the problem with this “proof” is in the inductive step. The inductive step applies
the inductive hypothesis to max(x — 1,y — 1). However, this implicitly assumes that £ —1 and y — 1
are positive integers whenever x and y are positive integers. This is not always true - for k = 1, we
could have, for example, z = 1 and y = 2. Then z —1 = 0 is not a positive integer and the inductive
hypothesis doesn’t apply. O



