Homework 2

Problem §2.3: 2: Determine whether f is a function from Z to R if
(a) f(n) = ±n
(b) f(n) = √n² + 1

- (c) $f(n) = \frac{1}{n^2 4}$

Problem §2.3: 12: Determine whether each of these functions from \mathbb{Z} to \mathbb{Z} is one-to-one.

- (a) f(n) = n − 1.
 (b) f(n) = n² + 1.
- (0) j(10) 10 1
- (c) $f(n) = n^3$.
- (d) $f(n) = \lceil n/2 \rceil$.

Problem §2.3: 14(a,b,c,d): Determine whether $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is onto if

- (a) f(m,n) = 2m n.
- (b) $f(m,n) = m^2 n^2$.
- (c) f(m,n) = m + n + 1.
- (d) f(m,n) = |m| |n|.

Problem §2.3: 20: Give an example of a function from \mathbb{N} to \mathbb{N} that is

- (a) one-to-one but not onto.
- (b) onto but not one-to-one.
- (c) both onto and one-to-one (but not the identity function).
- (d) neither one-to-one nor onto.

Problem §2.3: 22(a,b): Determine whether each of these functions is a bijection from \mathbb{R} to \mathbb{R} .

- (a) f(x) = -3x + 4.
- (b) $f(x) = -3x^2 + 7$.

Problem §2.3: 36: Find $f \circ g$ and $g \circ f$ where $f(x) = x^2 + 1$ and g(x) = x + 2 are functions from \mathbb{R} to \mathbb{R} .

Problem §2.3: 39: Show that the function f(x) = ax + b from \mathbb{R} to \mathbb{R} is invertible, where a and b are constants, with $a \neq 0$, and find the inverse of f.

Homework 2

Problem §2.3: 40(a): Let f be a function from the set A to the set B. Let S and T be subsets of A. Show that $f(S \cup T) = f(S) \cup f(T)$.

Problem §2.3: 44(b): Let f be a function from A to B. Let S and T be subsets of B. Show that $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$.

Problem §3.1: 2: Determine which characteristics of an algorithm described in the text the following procedures have and which they lack.

(a) procedure double(n: positive integer) while n > 0n := 2n (b) procedure divide(n: positive integer) while $n \ge 0$ m : = 1/nn := n-1 (c) procedure sum(n: positive integer) sum := 0while i < 10sum := sum + i (d) procedure choose(a,b: integers) x := either a or b

Problem §3.1: 24: Describe an algorithm that determines whether a function from a finite set to another finite set is one-to-one.

Problem §3.1: 52(a,d): Use the greedy algorithm to make change using quarters, dimes, nickels, and pennies for

(a) 87 cents.

(d) 33 cents.

Problem §3.1: 54(a,d): Use the greedy algorithm to make change using quarters, dimes, and pennies (but no nickels) for

(a) 87 cents.

(d) 33 cents.