
Math 213, Fall 2024 Homework 11 Due Sunday, 12/8 at 11:59pm

Problem §10.6 - 3: Find the length of a shortest path between a and z in the given weighted
graph.
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Solution. We use Dijkstra’s algorithm to write down the distance from a to each vertex in the graph.

• The closest vertex to a is b, and the distance from a to b is 2. This is just the edging coming
off a with smallest weight.

• The next closest vertex is c, with distance 3. This is obtained by extending our known distances
by the new edges ac (3), bd (2+5=7), and be (2+2=4). For example, adding bd gets a length
of 7 because we already know we need a length of 2 to get from a to b, and we add the weight
of 5 from the edge bd. Now out of these options, the smallest value is 3, obtained by adding
ac. So we conclude that we have found the distance to c.

• The next closest vertex is e, and the distance is 4. This is obtained by extending our known
distances by the new edges bd (2+5=7), be (2+2=4), and ce (3+5=8). The smallest value is
4 at be.

• The next closest vertex is d, and the distance is 5. This is obtained by extending our known
distances by the new edges bd (2+5=7), ed (4+1=5), and ez (4+4=8). The smallest value is
5 at ed.

• The next closest vertex is z, and the distance is 7. This is obtained by extending our known
distances by the new edges dz (5+2=7) and ez (4+4=8). The smallest value is 7 at dz.

Since we have reached our desired vertex z, we can stop and conclude that the length of the shortest
path is 7.

Problem §10.6 - 5: Find a shortest path between a and z in the weighted graph in Exercise 3.

Solution. The shortest path is constructed by working backward through the way z was obtained in
the previous exercise. Vertex z was reached in the last step, by the edge dz. Vertex d was reached
one step earlier, by the edge ed. Vertex e was reached one step earlier, by the edge be. Vertex b was
reached in the first step, by the edge ab. Now follow these edges. As a result, the shortest path is
abedz, which has length 2 + 2 + 1 + 2 = 7.

Problem §10.6 - 6: Find the length of a shortest path between these pairs of vertices in the
weighted graph in Exercise 3.

(a) a and d

(d) b and z

Solution. (a) was already done in problem 3. We found the distance from a to d to be 5. For (d),
we follow the same procedure as problem 4. The results are:

• The closest vertex to b is a tie between a and e, with distance 2.

• The next closest is d, with distance 3 and shortest path bed.
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• The next closest is a tie between c and z at distance 5, with shortest paths bac and bedz.

So the distance from b to z is 5.

Problem §10.6 - 7: Find shortest paths in the weighted graph in Exercise 3 between the
pairs of vertices in Exercise 6 (parts a and d).

Solution. This is computed while computing the distance, as in problems 4 and 5. The shortest
path from a to d is abcd, and the shortest path from b to z is bedz.

Problem §10.6 - 26: Solve the traveling salesperson problem for this graph by finding the
total weight of all Hamilton circuits and determining a circuit with minimum total weight.
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Solution. We make a table of the 12 Hamilton circuits with their edge weights and total weights:

Circuit Edge Weights Sum
abcde 3 + 10 + 6 + 1 + 7 27
abced 3 + 10 + 5 + 1 + 4 23
abdce 3 + 9 + 6 + 5 + 7 30
abdec 3 + 9 + 1 + 5 + 8 26
abecd 3 + 2 + 5 + 6 + 4 20
abedc 3 + 2 + 1 + 6 + 8 20
acbde 8 + 10 + 9 + 1 + 7 35
acbed 8 + 10 + 2 + 1 + 4 25
acdbe 8 + 6 + 9 + 2 + 7 32
acebd 8 + 5 + 2 + 9 + 4 28
adbce 4 + 9 + 10 + 5 + 7 35
adcbe 4 + 6 + 10 + 2 + 7 29

The smallest total weight is 20, which is achieved by the circuit abecd.

Problem §10.7 - 6: Determine whether the given graph is planar. If so, draw it so that no
edges cross.
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Solution. This graph is indeed planar. Here is the graph drawn so that no edges cross:
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Problem §10.7 - 11: Show that K5 is nonplanar using an argument similar to that given in
Example 3.

Solution. Label the vertices of K5 as a, b, c, d, e, and suppose we draw all the edges without crossings.
Then the circuit abca makes a simple closed curve in the plane, which divides the plane into two
regions (e.g. the inside and outside of a triangle). Now vertex d is either in the inside or outside
region. Without loss of generality, suppose d is on the inside (a symmetric argument works if d is
on the outside). Then the edges da, db, and dc split the inside region into three subregions. We now
have 4 total triangular regions, including the outside:
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Now consider vertex e. We must place it inside one of these four triangular regions. For example,
suppose we put e inside the triangle acd. Then since e is inside this triangle, and b is outside it, we
cannot draw the edge from e to b without making a crossing.

A similar argument works no matter what region we put e in. In any case, the region containing
e is a triangle, so it includes 3 of the vertices {a, b, c, d}. But then the remaining vertex among
{a, b, c, d} cannot connect to e without crossing the border of the triangle.

Problem §10.7 - 13: Suppose that a connected planar graph has six vertices, each of degree
four. Into how many regions is the plane divided by a planar representation of this graph?

Solution. Let v, e, and r be the numbers of vertices, edges, and regions, respectively. By Euler’s
Formula, r = e − v + 2. We are given v = 6. We can also find e using the handshaking theorem.
That is, since all of the degrees are 4, the sum of the degrees is 6 × 4 = 24. This is also twice the
number of edges, implying that e = 12.

So v = 6 and e = 12, and plugging these in gets r = 12− 6 + 2 = 8.

Problem §10.7 - 14: Suppose that a connected planar graph has 30 edges. If a planar
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representation of this graph divides the plane into 20 regions, how many vertices does this
graph have?

Solution. Let v, e, and r be the numbers of vertices, edges, and regions, respectively. By Euler’s
Formula, r = e − v + 2. We are given e = 30 and r = 20. Plugging these in gets 20 = 30 − v + 2,
and solving this gets v = 12.

Problem §10.8 - 1: Construct the dual graph for the map shown. (See Rosen for the map!)
Then find the number of colors needed to color the map so that no two adjacent regions have
the same color.

Solution. Here is the dual graph:
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The chromatic number of this graph (and, equivalently, of the original map) is 4. We need at
least 4 colors since a, b, c, and d are all adjacent, and therefore require 4 different colors. This means
that the chromatic number is at least 4.

On the other hand, if we color vertex a red, vertex b blue, vertex d green, and vertices c and e
orange, that is a proper 4-coloring of the graph, so the chromatic number is at most 4. Combining
the two inequalities, we see that the chromatic number is exactly 4.

Problem §10.8 - 5: Find the chromatic number of the given graph.

a b

c d

Solution. The chromatic number is 3. We need at least 3 colors because of the triange abc: these
three vertices are all adjacent, and so they need 3 different colors.

On the other hand, we can obtain a valid 3-coloring by (for example) coloring a red, b blue, c
green, and d red (or green). So, since 3 colors are both necesssary and attainable, the chromatic
number is 3.

Problem §10.8 - 6: Find the chromatic number of the given graph.



Math 213, Fall 2024 Homework 11 Due Sunday, 12/8 at 11:59pm

a

b c

d

e f

g

Solution. The chromatic number is 3. We need at least 3 colors because the graph contains triangles.
For example, a, b, and g are all adjacent to each other, and so they need 3 different colors.

On the other hand, there is a valid 3-coloring, obtained by alternating between two colors around
the outside and coloring g a third color. For example, color a red, b blue, c red, d blue, f red, and
g green.

Problem §10.8 - 15: What is the chromatic number of Wn?

Solution. The chromatic number is 3 if n is even, and 4 if n is odd. (Recall that Wn is only defined
for n ≥ 3, so we assume n ≥ 3.).

Recall that Wn consists of a simple circuit of length n, which we will call the ‘outer circuit’ of
‘outer vertices’; and an additional ‘middle’ vertex adjacent to all of the outer ones.

Now notice that Wn contains a triangle (e.g. two consecutive outer vertices and the middle one),
so at least three colors are needed. If n is even, then in fact three colors suffice: color the outer
cicuit by alternating red/blue/red/blue etc., and finally color the middiel vertex green. This shows
that the chromatic number is exactly 3 when n is even.

Now assume n is odd. The same coloring above does not work, because the first and last vertices
of the outer circuit will get the same color. In fact, this can be turned into a proof that Wn can only
be colored with 4 or more colors. First we observe that we cannot 2-color the outer circuit, because
if so, the colors would have to alternate, and since n is odd, we end up with two adjacent vertices
of the same color (see also the next exercise). So we need 3 colors on the outer circuit alone. And
then the middle vertex has to get a different color than each outer vertex (because it is adjacent to
all outer vertices), so we are forced to use a fourth color.

On the other hand, 4 colors is possible: start by alternating red/blue/red/blue around the outside
circuit, and coloring the middle vertex green. This results in two adjacent red vertices on the outside:
now just change either of these to a fourth color, say purple, and we obtain a valid 4-coloring. This
shows that the chromatic number is 4 when n is odd.

Problem §10.8 - 16: Show that a simple graph that has a circuit with an odd number of
vertices in it cannot be colored using two colors.

Solution. This is outlined in the solution to the previous exercise. Suppose the vertices in the circuit
are v1, ..., v2n+1, v1 (where we use 2n+1 because the length is odd), and suppose we manage to color
the graph with two colors, say red and blue. Without loss of generality, we can assume vi is colored
red (otherwise, we can make a symmetric argument with red and blue reversed). Then following
around the circuit, v2 has to be colored blue, v3 has to be colored red, and so on. In general, each
vk is colored red if k is odd and blue if k is even.

Now the last vertex in the circuit, v2n+1, is colored red (since 2n+1 is odd). But then v2n+1 and
v1 are adjacent red vertices, which invalidates the coloring. Thus our coloring fails, and we reach a
contradiction.


